Recent studies on spermidine

Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics

Nils C Gassen, Jan Papies, Thomas Bajaj, Frederik Dethloff, Jackson Emanuel, Katja Weckmann, Daniel E. Heinz, Nicolas Heinemann, Martina Lennarz, Anja Richter, Daniela Niemeyer, Victor M Corman, Patrick Giavalisco, Christian Drosten, Marcel A Muller

Link to Full-Text (bioRxiv)

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses an acute threat to public health and the world economy, especially because no approved specific drugs or vaccines are available. Pharmacological modulation of metabolism-dependent cellular pathways such as autophagy reduced propagation of highly pathogenic Middle East respiratory syndrome (MERS)-CoV.

Here we show that SARS-CoV-2 infection limits autophagy by interfering with multiple metabolic pathways and that compound-driven interventions aimed at autophagy induction reduce SARS-CoV-2 propagation in vitro. In-depth analyses of autophagy signaling and metabolomics indicate that SARS-CoV-2 reduces glycolysis and protein translation by limiting activation of AMP-protein activated kinase (AMPK) and mammalian target of rapamycin complex 1 (mTORC1). Infection also downregulates autophagy-inducing spermidine, and facilitates AKT1/SKP2-dependent degradation of autophagy-initiating Beclin-1 (BECN1). Targeting of these pathways by exogenous administration of spermidine, AKT inhibitor MK-2206, and the Beclin-1 stabilizing, antihelminthic drug niclosamide inhibited SARS-CoV-2 propagation by 85, 88, and >99%, respectively. In sum, SARS-CoV-2 infection causally diminishes autophagy. A clinically approved and well-tolerated autophagy-inducing compound shows potential for evaluation as a treatment against SARS-CoV-2.


SPERMIDINE-ENHANCED AUTOPHAGIC FLUX IMPROVES CARDIAC DYSFUNCTION FOLLOWING MYOCARDIAL INFARCTION BY TARGETING THE AMPK/MTOR SIGNALLING PATHWAY.

11. Mai 2019 • Yan J, Yan JY, Wang YX, Ling YN, Song XD, Wang SY, Liu HQ, Liu QC, Zhang Y4, Yang PZ, Wang XB, Chen AH
Link to study (PubMed, englisch)

Abstract 

BACKGROUND AND PURPOSE:

Spermidine, a natural polyamine, is abundant in mammalian cells and is involved in cell growth, proliferation, and regeneration. Recently, oral spermidine supplements were cardioprotective in age-related cardiac dysfunction, through enhancing autophagic flux. However, the effect of spermidine on myocardial injury and cardiac dysfunction following myocardial infarction (MI) remains unknown.

EXPERIMENTAL APPROACH:

We determined the effects of spermidine in a model of MI, Sprague-Dawley rats with permanent ligation of the left anterior descending artery, and in cultured neonatal rat cardiomyocytes (NRCs) exposed to angiotensin II (Ang II). Cardiac function in vivo was assessed with echocardiography. In vivo and in vitro studies used histological and immunohistochemical techniques, along with western blots.

KEY RESULTS:

Spermidine improved cardiomyocyte viability and decreased cell necrosis in NRCs treated with angiotensin II. In rats post-MI, spermidine reduced infarct size, improved cardiac function, and attenuated myocardial hypertrophy. Spermidine also suppressed the oxidative damage and inflammatory cytokines induced by MI. Moreover, spermidine enhanced autophagic flux and decreased apoptosis both in vitro and in vivo. The protective effects of spermidine on cardiomyocyte apoptosis and cardiac dysfunction were abolished by the autophagy inhibitor chloroquine, indicating that spermidine exerted cardioprotective effects at least partly through promoting autophagic flux, by activating the AMPK/mTOR signalling pathway.

CONCLUSIONS AND IMPLICATIONS:

Our findings suggest that spermidine improved MI-induced cardiac dysfunction by promoting AMPK/mTOR-mediated autophagic flux.


HIGHER SPERMIDINE INTAKE IS LINKED TO LOWER MORTALITY: A PROSPECTIVE POPULATION-BASED STUDY

28. Juni 2018 • Kiechl, Pechlaner, Willeit, Notdurfter, Paulweber, Werner, Ruckenstuhl, Iglseder, Weger
Link to study (American Journal of Clinical Nutrition, englisch)

Abstract 

Background
Spermidine administration is linked to increased survival in several animal models.

Objective
The aim of this study was to test the potential association between spermidine content in diet and mortality in humans.

Design
This prospective community-based cohort study included 829 participants aged 45–84 y, 49.9% of whom were male. Diet was assessed by repeated dietitian-administered validated food-frequency questionnaires (2540 assessments) in 1995, 2000, 2005, and 2010. During follow-up between 1995 and 2015, 341 deaths occurred.

Results
All-cause mortality (deaths per 1000 person-years) decreased across thirds of increasing spermidine intake from 40.5 (95% CI: 36.1, 44.7) to 23.7 (95% CI: 20.0, 27.0) and 15.1 (95% CI: 12.6, 17.8), corresponding to an age-, sex- and caloric intake–adjusted 20-y cumulative mortality incidence of 0.48 (95% CI: 0.45, 0.51), 0.41 (95% CI: 0.38, 0.45), and 0.38 (95% CI: 0.34, 0.41), respectively. The age-, sex- and caloric ratio–adjusted HR for all-cause death per 1-SD higher spermidine intake was 0.74 (95% CI: 0.66, 0.83; P < 0.001). Further adjustment for lifestyle factors, established predictors of mortality, and other dietary features yielded an HR of 0.76 (95% CI: 0.67, 0.86; P < 0.001). The association was consistent in subgroups, robust against unmeasured confounding, and independently validated in the Salzburg Atherosclerosis Prevention Program in Subjects at High Individual Risk (SAPHIR) Study (age-, sex-, and caloric ratio–adjusted HR per 1-SD higher spermidine intake: 0.71; 95% CI: 0.53, 0.95; P = 0.019). The difference in mortality risk between the top and bottom third of spermidine intakes was similar to that associated with a 5.7-y (95% CI: 3.6, 8.1 y) younger age.

Conclusion
Our findings lend epidemiologic support to the concept that nutrition rich in spermidine is linked to increased survival in humans. This trial was registered at www.clinicaltrials.gov as NCT03378843.


SPERMIDINE IN HEALTH AND DISEASE

26. Januar 2018 • Madeo, Eisenberg, Pietrocola, Kroemer
Link zur Studie (PubMed, englisch)
Volltext (Sciencemag, englisch)

Abstract

Interventions that delay aging and protect from age-associated disease are slowly approaching clinical implementation. Such interventions include caloric restriction mimetics, which are defined as agents that mimic the beneficial effects of dietary restriction while limiting its detrimental effects. One such agent, the natural polyamine spermidine, has prominent cardioprotective and neuroprotective effects and stimulates anticancer immunosurveillance in rodent models. Moreover, dietary polyamine uptake correlates with reduced cardiovascular and cancer-related mortality in human epidemiological studies. Spermidine preserves mitochondrial function, exhibits anti-inflammatory properties, and prevents stem cell senescence. Mechanistically, it shares the molecular pathways engaged by other caloric restriction mimetics: It induces protein deacetylation and depends on functional autophagy. Because spermidine is already present in daily human nutrition, clinical trials aiming at increasing the uptake of this polyamine appear feasible.


SPERMIDINE RESCUES PROXIMAL TUBULAR CELLS FROM OXIDATIVE STRESS AND NECROSIS AFTER ISCHEMIC ACUTE KIDNEY INJURY

Oktober 2017 • Kim, J

Link zur Studie (PubMed, englisch)
Volltext (Springer Link, englisch, kostenpflichtig)

Abstract (Übersetzung)

Kidney ischemia and reperfusion injury (IRI) is associated with a high mortality rate, which is attributed to tubular oxidative stress and necrosis; however, an effective approach to limit IRI remains elusive. Spermidine, a naturally occurring polyamine, protects yeast cells against aging through the inhibition of oxidative stress and necrosis. In the present study, spermidine supplementation markedly attenuated increases in plasma creatinine concentration and tubular injury score after IRI. In addition, exogenous spermidine potently inhibited oxidative stress, especially lipid peroxidation after IRI in kidneys and exposure to hydrogen peroxide in kidney proximal tubular cells, suppressing plasma membrane disruption and necrosis. Consistent with spermidine supplementation, upregulation of ornithine decarboxylase (ODC) in human kidney proximal tubular cells significantly diminished lipid peroxidation and necrosis induced by hydrogen peroxide-induced injury. Conversely, ODC deficiency significantly enhanced lipid peroxidation and necrosis after exposure to hydrogen peroxide. Finally, small interfering RNA-mediated ODC inhibition induced functional and histological damage in kidneys as well as it increased lipid hydroperoxide levels after IRI. In conclusion, these data suggest that spermidine level determines kidney proximal tubular damage through oxidative stress and necrosis induced by IRI, and this finding provides a novel target for prevention of tubular damage induced by IRI.


CARDIOPROTECTION AND LIFESPAN EXTENSION BY THE NATURAL POLYAMINE SPERMIDINE

2016 • Eisenberg, Abdellatif, Kroemer, Madeo, Sedej

Link zur Studie (Nature, englisch, kostenpflichtig)

Abstract (Übersetzung)

Aging is associated with an increased risk of cardiovascular disease and death. Here we show that oral supplementation of the natural polyamine spermidine extends the lifespan of mice and exerts cardioprotective effects, reducing cardiac hypertrophy and preserving diastolic function in old mice. Spermidine feeding enhanced cardiac autophagy, mitophagy and mitochondrial respiration, and it also improved the mechano-elastical properties of cardiomyocytes in vivo, coinciding with increased titin phosphorylation and suppressed subclinical inflammation. Spermidine feeding failed to provide cardioprotection in mice that lack the autophagy-related protein Atg5 in cardiomyocytes. In Dahl salt-sensitive rats that were fed a high-salt diet, a model for hypertension-induced congestive heart failure, spermidine feeding reduced systemic blood pressure, increased titin phosphorylation and prevented cardiac hypertrophy and a decline in diastolic function, thus delaying the progression to heart failure. In humans, high levels of dietary spermidine, as assessed from food questionnaires, correlated with reduced blood pressure and a lower incidence of cardiovascular disease. Our results suggest a new and feasible strategy for protection against cardiovascular disease.


DEPLETION OF THE POLYAMINES SPERMIDINE AND SPERMINE BY OVEREXPRESSION OF SPERMIDINE/SPERMINE N¹-ACETYLTRANSFERASE 1 (SAT1) LEADS TO MITOCHONDRIA-MEDIATED APOPTOSIS IN MAMMALIAN CELLS

Juni 2015 • Mandal S, Mandal A, Park MH

Link zur Studie (PubMed, englisch)

Abstract (Übersetzung)

The polyamines putrescine, spermidine and spermine are intimately involved in the regulation of cellular growth and viability. Transduction of HEK293T cells with an adenovirus (AdSAT1) encoding a key polyamine catabolic enzyme, spermidine/spermine N1-acetyltransferase1 (SAT1), leads to a rapid depletion of spermidine and spermine, arrest in cell growth and a decline in cell viability. Annexin V/ propidium iodide Fluorescent Activated Cell Sorter (FACS) analyses, Terminal Uridine Nucleotide End- Labeling (TUNEL) and caspase 3 assays showed a clear indication of apoptosis in AdSAT1 transduced cells (at 24–72 h), but not in cells transduced with GFP-encoding adenovirus (AdGFP). Apoptosis in the polyamine-depleted cells occurs by the mitochondrial intrinsic pathway, as evidenced by loss of mitochondrial membrane potential, increase in proapoptotic Bax, decrease in anti-apoptotic Bcl-xl, Bcl2, and Mcl-1 and release of cytochrome c from mitochondria, upon transduction with AdSAT1. Moreover, transmission electron microscopy images of AdSAT1-transduced cells revealed morphological changes commonly associated with apoptosis, including cell shrinkage, nuclear fragmentation, mitochondrial alteration, vacuolization and membrane blebbing. The apoptosis appears to result largely from depletion of the polyamines, spermidine and spermine, as polyamine analogs, α-methylspermidine and N1,N12-dimethylspermine that are not substrates for SAT1 could partially restore growth and prevent apoptosis of AdSAT1-transduced cells. Inhibition of polyamine oxidases did not restore the growth of AdSAT1-transduced cells or block apoptosis, suggesting that the growth arrest and apoptosis were not induced by oxidative stress resulting from accelerated polyamine catabolism. Taken together, these data provide strong evidence that the depletion of polyamines spermidine and spermine leads to mitochondria-mediated apoptosis.


DEPLETION OF THE POLYAMINES SPERMIDINE AND SPERMINE BY OVEREXPRESSION OF SPERMIDINE/SPERMINE N¹-ACETYLTRANSFERASE 1 (SAT1) LEADS TO MITOCHONDRIA-MEDIATED APOPTOSIS IN MAMMALIAN CELLS

August 2011 • Pichiah

Link zur Studie (ResearchGate, englisch)

Abstract (Übersetzung)

The risk for diabetes increases with increasing BMI<25. Insulin resistance is the key factor for type 2 diabetes; studies revealed that endoplasmic reticulum stress is the main factor behind this disease. With increase in ER stress, pancreatic beta cells start to undergo apoptosis, leading to a decline in the pancreatic beta cell population. The ER stress arises due to unfolded protein response. Recently, spermidine get importance for increasing the longevity in most of the eukaryotes including yeast, Caenorhabditis elegans, Drosophila and human peripheral blood mononuclear cells via induction of autophagy pathway. Autophagy is also involved in regulation of scavenging of proteins. One of the major cellular pathways for scavenging the aggregated intracellular protein is autophagy. Hence spermidine can be a candidate for the treatment type 2 diabetes. Autophagy genes are regulated by mTOR (mammalian Target Of Rapamycin) dependent or independent pathway via AMPK. Hence either inhibition of mTOR or activation of AMPK by spermidine will play two crucial roles, first being the activation of autophagy and secondly the reduction of endoplasmic reticulum stress which will reduce beta cell death by apoptosis and thus can be a novel therapeutic candidate in the treatment of insulin resistance in type 2 diabetes and preserving pancreatic beta cell mass.