Fachinformationen

Spermidin

(Spermidine, engl.)

PubChem CID: 1102
Namen: Spermidine; 124-20-9; 1,5,10-Triazadecane; 4-Azaoctamethylenediamine; Spermidin; N1-(3-Aminopropyl)butane-1,4-diamine
Summenformel: C7H19N3
Molekulargewicht: 145.25 g/mol
InChI Key: ATHGHQPFGPMSJY-UHFFFAOYSA-N
Substance Registry: FDA UNII
Sicherheitsbestimmungen: Laboratory Chemical Safety Summary (LCSS)

Spermidin ist ein Polyamin, das aus Putrescin gebildet wird. Es ist in fast allen Geweben in Verbindung mit Nukleinsäuren zu finden. Es wird als Kation bei allen pH-Werten gefunden und soll helfen, einige Membranen und Nukleinsäurestrukturen zu stabilisieren. Es ist ein Vorläufer des Spermas.


Spermidin Struktur

2D-Struktur

Spermidin Molekül 2D
Quelle: PubChem

3D-Struktur

Spermidin Molekül 3D
Quelle: PubChem


Namen und Bezeichnungen

IUPAC Name: ~{N}'-(3-aminopropyl)butane-1,4-diamine

InChI Key: ATHGHQPFGPMSJY-UHFFFAOYSA-N

Canonical SMILES: C(CCNCCCN)CN

Summenformel: C7H19N3

Weitere Bezeichnungen: 124-20-9, 133483-05-3, 133483-10-0


Chemische und physikalische Eigenschaften von Spermidin

Property Name Property Value
Molecular Weight 145.25 g/mol
Hydrogen Bond Donor Count 3
Hydrogen Bond Acceptor Count 3
Rotatable Bond Count 7
Complexity 56.8
Topological Polar Surface Area 64.1 A^2
Monoisotopic Mass 145.158 g/mol
Exact Mass 145.158 g/mol
XLogP3-AA -1
Compound Is Canonicalized true
Formal Charge 0
Heavy Atom Count 10
Defined Atom Stereocenter Count 0
Undefined Atom Stereocenter Count 0
Defined Bond Stereocenter Count 0
Undefined Bond Stereocenter Count 0
Isotope Atom Count 0
Covalently-Bonded Unit Count 1

Siedepunkt: 129 °C at 1.40E+01 mm Hg

Schmelzpunkt: < 25 °C


Pharmakologie & Biochemie

Pharmakologie

Spermidin ist ein von Putrescin abgeleitetes Polyamin, das an vielen biologischen Prozessen beteiligt ist, darunter die Regulierung des Membranpotenzials, die Hemmung der Stickoxid-Synthase (NOS) und die Induktion der Autophagie.

Spermidin findet sich in folgenden Geweben

  • Gehirn
  • Erythrozyten
  • Fibroblasten
  • Darm
  • Leber
  • Neuron
  • Blutplättchen
  • Prostata
  • Haut
  • Hoden

Zelluläre Lokalisationen

  • Zytoplasma

Stoffwechselwege

  1. Cystathionin Beta-Synthase-Mangel
  2. Glycin N-Methyltransferase-Mangel
  3. Homocystinurie-Megaloblastische Anämie aufgrund eines Defekts im Cobalaminstoffwechsel, cblG-Komplementierungstyp
  4. Hypermethioninämie
  5. Methionin Adenosyltransferase-Mangel
  6. Methionin Stoffwechsel
  7. Methylentetrahydrofolat Reductase-Mangel (MTHFRD)
  8. S-Adenosylhomocystein (SAH) Hydrolasemangel
  9. Spermidin und Spermabiosynthese

Mit Spermidin in Zusammenhang stehende Störungen und Krankheiten

Alzheimer
  • Redjems-Bennani N, Jeandel C, Lefebvre E, Blain H, Vidailhet M, Gueant JL: Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients. Gerontology. 1998;44(5):300-4.[PMID:9693263]
  • Raskind MA, Peskind ER, Holmes C, Goldstein DS: Patterns of cerebrospinal fluid catechols support increased central noradrenergic responsiveness in aging and Alzheimer's disease. Biol Psychiatry. 1999 Sep 15;46(6):756-65.[PMID:10494443]
  • Walter A, Korth U, Hilgert M, Hartmann J, Weichel O, Hilgert M, Fassbender K, Schmitt A, Klein J: Glycerophosphocholine is elevated in cerebrospinal fluid of Alzheimer patients. Neurobiol Aging. 2004 Nov-Dec;25(10):1299-303.[PMID:15465626]
  • Selley ML, Close DR, Stern SE: The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer's disease. Neurobiol Aging. 2002 May-Jun;23(3):383-8.[PMID:11959400]
  • Molina JA, Jimenez-Jimenez FJ, Hernanz A, Fernandez-Vivancos E, Medina S, de Bustos F, Gomez-Escalonilla C, Sayed Y: Cerebrospinal fluid levels of thiamine in patients with Alzheimer's disease. J Neural Transm (Vienna). 2002 Jul;109(7-8):1035-44.[PMID:12111441]
  • Serot JM, Barbe F, Arning E, Bottiglieri T, Franck P, Montagne P, Nicolas JP: Homocysteine and methylmalonic acid concentrations in cerebrospinal fluid: relation with age and Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2005 Nov;76(11):1585-7.[PMID:16227558]
  • Leoni V, Masterman T, Mousavi FS, Wretlind B, Wahlund LO, Diczfalusy U, Hillert J, Bjorkhem I: Diagnostic use of cerebral and extracerebral oxysterols. Clin Chem Lab Med. 2004 Feb;42(2):186-91.[PMID:15061359]
  • Lovell MA, Markesbery WR: Ratio of 8-hydroxyguanine in intact DNA to free 8-hydroxyguanine is increased in Alzheimer disease ventricular cerebrospinal fluid. Arch Neurol. 2001 Mar;58(3):392-6.[PMID:11255442]
  • Shetty HU, Holloway HW, Schapiro MB: Cerebrospinal fluid and plasma distribution of myo-inositol and other polyols in Alzheimer disease. Clin Chem. 1996 Feb;42(2):298-302.[PMID:8595727]
  • Bar KJ, Franke S, Wenda B, Muller S, Kientsch-Engel R, Stein G, Sauer H: Pentosidine and N(epsilon)-(carboxymethyl)-lysine in Alzheimer's disease and vascular dementia. Neurobiol Aging. 2003 Mar-Apr;24(2):333-8.[PMID:12498967]
  • Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG: Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects. Amino Acids. 2007 Feb;32(2):213-24. Epub 2006 Oct 10.[PMID:17031479]
  • Jia JP, Jia JM, Zhou WD, Xu M, Chu CB, Yan X, Sun YX: Differential acetylcholine and choline concentrations in the cerebrospinal fluid of patients with Alzheimer's disease and vascular dementia. Chin Med J (Engl). 2004 Aug;117(8):1161-4.[PMID:15361288]
  • Reichman ME, Judd JT, Longcope C, Schatzkin A, Clevidence BA, Nair PP, Campbell WS, Taylor PR: Effects of alcohol consumption on plasma and urinary hormone concentrations in premenopausal women. J Natl Cancer Inst. 1993 May 5;85(9):722-7.[PMID:8478958]
  • Abe T, Tohgi H, Isobe C, Murata T, Sato C: Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer's disease. J Neurosci Res. 2002 Nov 1;70(3):447-50.[PMID:12391605]
  • Molina JA, Jimenez-Jimenez FJ, Aguilar MV, Meseguer I, Mateos-Vega CJ, Gonzalez-Munoz MJ, de Bustos F, Porta J, Orti-Pareja M, Zurdo M, Barrios E, Martinez-Para MC: Cerebrospinal fluid levels of transition metals in patients with Alzheimer's disease. J Neural Transm (Vienna). 1998;105(4-5):479-88.[PMID:9720975]
  • Bocca B, Forte G, Petrucci F, Pino A, Marchione F, Bomboi G, Senofonte O, Giubilei F, Alimonti A: Monitoring of chemical elements and oxidative damage in patients affected by Alzheimer's disease. Ann Ist Super Sanita. 2005;41(2):197-203.[PMID:16244393]
  • Kristensen MO, Gulmann NC, Christensen JE, Ostergaard K, Rasmussen K: Serum cobalamin and methylmalonic acid in Alzheimer dementia. Acta Neurol Scand. 1993 Jun;87(6):475-81.[PMID:8356878]
  • Hozumi I, Hasegawa T, Honda A, Ozawa K, Hayashi Y, Hashimoto K, Yamada M, Koumura A, Sakurai T, Kimura A, Tanaka Y, Satoh M, Inuzuka T: Patterns of levels of biological metals in CSF differ among neurodegenerative diseases. J Neurol Sci. 2011 Apr 15;303(1-2):95-9. doi: 10.1016/j.jns.2011.01.003. Epub 2011 Feb 2.[PMID:21292280]
  • Motawaj M, Peoc'h K, Callebert J, Arrang JM: CSF levels of the histamine metabolite tele-methylhistamine are only slightly decreased in Alzheimer's disease. J Alzheimers Dis. 2010;22(3):861-71. doi: 10.3233/JAD-2010-100381.[PMID:20858978]
  • Linnebank M, Popp J, Smulders Y, Smith D, Semmler A, Farkas M, Kulic L, Cvetanovska G, Blom H, Stoffel-Wagner B, Kolsch H, Weller M, Jessen F: S-adenosylmethionine is decreased in the cerebrospinal fluid of patients with Alzheimer's disease. Neurodegener Dis. 2010;7(6):373-8. doi: 10.1159/000309657. Epub 2010 Jun 3.[PMID:20523031]
  • Smach MA, Jacob N, Golmard JL, Charfeddine B, Lammouchi T, Ben Othman L, Dridi H, Bennamou S, Limem K: Folate and homocysteine in the cerebrospinal fluid of patients with Alzheimer's disease or dementia: a case control study. Eur Neurol. 2011;65(5):270-8. doi: 10.1159/000326301. Epub 2011 Apr 8.[PMID:21474939]
  • Rosler N, Wichart I, Jellinger KA: Clinical significance of neurobiochemical profiles in the lumbar cerebrospinal fluid of Alzheimer's disease patients. J Neural Transm (Vienna). 2001;108(2):231-46.[PMID:11314776]
  • Sunderland T, Berrettini WH, Molchan SE, Lawlor BA, Martinez RA, Vitiello B, Tariot PN, Cohen RM: Reduced cerebrospinal fluid dynorphin A1-8 in Alzheimer's disease. Biol Psychiatry. 1991 Jul 1;30(1):81-7.[PMID:1716470]
  • Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6.[PMID:23857558]
Darmkrebs
  • Ishiwata S, Itoh K, Yamaguchi T, Ishida N, Mizugaki M: Comparison of serum and urinary levels of modified nucleoside, 1-methyladenosine, in cancer patients using a monoclonal antibody-based inhibition ELISA. Tohoku J Exp Med. 1995 May;176(1):61-8.[PMID:7482520]
  • Cheng Y, Xie G, Chen T, Qiu Y, Zou X, Zheng M, Tan B, Feng B, Dong T, He P, Zhao L, Zhao A, Xu LX, Zhang Y, Jia W: Distinct urinary metabolic profile of human colorectal cancer. J Proteome Res. 2012 Feb 3;11(2):1354-63. doi: 10.1021/pr201001a. Epub 2011 Dec 28.[PMID:22148915]
  • Monleon D, Morales JM, Barrasa A, Lopez JA, Vazquez C, Celda B: Metabolite profiling of fecal water extracts from human colorectal cancer. NMR Biomed. 2009 Apr;22(3):342-8. doi: 10.1002/nbm.1345.[PMID:19006102]
  • Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP: Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One. 2013 Aug 6;8(8):e70803. doi: 10.1371/journal.pone.0070803. Print 2013.[PMID:23940645]
  • Phua LC, Chue XP, Koh PK, Cheah PY, Ho HK, Chan EC: Non-invasive fecal metabonomic detection of colorectal cancer. Cancer Biol Ther. 2014 Apr;15(4):389-97. doi: 10.4161/cbt.27625. Epub 2014 Jan 14.[PMID:24424155]
  • Ritchie SA, Ahiahonu PW, Jayasinghe D, Heath D, Liu J, Lu Y, Jin W, Kavianpour A, Yamazaki Y, Khan AM, Hossain M, Su-Myat KK, Wood PL, Krenitsky K, Takemasa I, Miyake M, Sekimoto M, Monden M, Matsubara H, Nomura F, Goodenowe DB: Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection. BMC Med. 2010 Feb 15;8:13. doi: 10.1186/1741-7015-8-13.[PMID:20156336]
  • Qiu Y, Cai G, Su M, Chen T, Zheng X, Xu Y, Ni Y, Zhao A, Xu LX, Cai S, Jia W: Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS. J Proteome Res. 2009 Oct;8(10):4844-50. doi: 10.1021/pr9004162.[PMID:19678709]
  • Ni Y, Xie G, Jia W: Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery. J Proteome Res. 2014 Sep 5;13(9):3857-70. doi: 10.1021/pr500443c. Epub 2014 Aug 14.[PMID:25105552]
  • Ikeda A, Nishiumi S, Shinohara M, Yoshie T, Hatano N, Okuno T, Bamba T, Fukusaki E, Takenawa T, Azuma T, Yoshida M: Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomed Chromatogr. 2012 May;26(5):548-58. doi: 10.1002/bmc.1671. Epub 2011 Jul 20.[PMID:21773981]
  • Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18.[PMID:25037050]
  • Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016.[PMID:27015276]
  • Lin Y, Ma C, Liu C, Wang Z, Yang J, Liu X, Shen Z, Wu R: NMR-based fecal metabolomics fingerprinting as predictors of earlier diagnosis in patients with colorectal cancer. Oncotarget. 2016 May 17;7(20):29454-64. doi: 10.18632/oncotarget.8762.[PMID:27107423]
  • Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016.[PMID:27275383]
  • Wang X, Wang J, Rao B, Deng L: Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals. Exp Ther Med. 2017 Jun;13(6):2848-2854. doi: 10.3892/etm.2017.4367. Epub 2017 Apr 20.[PMID:28587349]
  • Silke Matysik, Caroline Ivanne Le Roy, Gerhard Liebisch, Sandrine Paule Claus. Metabolomics of fecal samples: A practical consideration. Trends in Food Science & Technology. Vol. 57, Part B, Nov. 2016, p.244-255: http://www.sciencedirect.com/science/article/pii/S0924224416301984
Morbus Crohn
  • Lapidus A, Akerlund JE, Einarsson C: Gallbladder bile composition in patients with Crohn 's disease. World J Gastroenterol. 2006 Jan 7;12(1):70-4.[PMID:16440420]
  • Ehrenpreis ED, Salvino M, Craig RM: Improving the serum D-xylose test for the identification of patients with small intestinal malabsorption. J Clin Gastroenterol. 2001 Jul;33(1):36-40.[PMID:11418788]
  • Brydon WG, Nyhlin H, Eastwood MA, Merrick MV: Serum 7 alpha-hydroxy-4-cholesten-3-one and selenohomocholyltaurine (SeHCAT) whole body retention in the assessment of bile acid induced diarrhoea. Eur J Gastroenterol Hepatol. 1996 Feb;8(2):117-23.[PMID:8723414]
  • Williams HR, Cox IJ, Walker DG, North BV, Patel VM, Marshall SE, Jewell DP, Ghosh S, Thomas HJ, Teare JP, Jakobovits S, Zeki S, Welsh KI, Taylor-Robinson SD, Orchard TR: Characterization of inflammatory bowel disease with urinary metabolic profiling. Am J Gastroenterol. 2009 Jun;104(6):1435-44. doi: 10.1038/ajg.2009.175. Epub 2009 Apr 28.[PMID:19491857]
  • Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, Wilson ID, Wang Y: Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. 2007 Feb;6(2):546-51.[PMID:17269711]
  • Ahmed I, Greenwood R, Costello Bde L, Ratcliffe NM, Probert CS: An investigation of fecal volatile organic metabolites in irritable bowel syndrome. PLoS One. 2013;8(3):e58204. doi: 10.1371/journal.pone.0058204. Epub 2013 Mar 13.[PMID:23516449]
  • Walton C, Fowler DP, Turner C, Jia W, Whitehead RN, Griffiths L, Dawson C, Waring RH, Ramsden DB, Cole JA, Cauchi M, Bessant C, Hunter JO: Analysis of volatile organic compounds of bacterial origin in chronic gastrointestinal diseases. Inflamm Bowel Dis. 2013 Sep;19(10):2069-78. doi: 10.1097/MIB.0b013e31829a91f6.[PMID:23867873]
  • De Preter V, Machiels K, Joossens M, Arijs I, Matthys C, Vermeire S, Rutgeerts P, Verbeke K: Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut. 2015 Mar;64(3):447-58. doi: 10.1136/gutjnl-2013-306423. Epub 2014 May 8.[PMID:24811995]
  • Bjerrum JT, Wang Y, Hao F, Coskun M, Ludwig C, Gunther U, Nielsen OH: Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn's disease and healthy individuals. Metabolomics. 2015;11:122-133. Epub 2014 Jun 1.[PMID:25598765]
  • Ahmed I, Greenwood R, Costello B, Ratcliffe N, Probert CS: Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Aliment Pharmacol Ther. 2016 Mar;43(5):596-611. doi: 10.1111/apt.13522. Epub 2016 Jan 25.[PMID:26806034]
  • Lee T, Clavel T, Smirnov K, Schmidt A, Lagkouvardos I, Walker A, Lucio M, Michalke B, Schmitt-Kopplin P, Fedorak R, Haller D: Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut. 2017 May;66(5):863-871. doi: 10.1136/gutjnl-2015-309940. Epub 2016 Feb 4.[PMID:26848182]
  • Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158.[PMID:27609529]
  • Azario I, Pievani A, Del Priore F, Antolini L, Santi L, Corsi A, Cardinale L, Sawamoto K, Kubaski F, Gentner B, Bernardo ME, Valsecchi MG, Riminucci M, Tomatsu S, Aiuti A, Biondi A, Serafini M: Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I. Sci Rep. 2017 Aug 25;7(1):9473. doi: 10.1038/s41598-017-09958-9.[PMID:28842642]
Frontotemporale Demenz
  • Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6.[PMID:23857558]
Leukämie
  • Lee SH, Suh JW, Chung BC, Kim SO: Polyamine profiles in the urine of patients with leukemia. Cancer Lett. 1998 Jan 9;122(1-2):1-8.[PMID:9464484]
  • Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14.[PMID:15911239]
  • Silvennoinen R, Malminiemi K, Malminiemi O, Seppala E, Vilpo J: Pharmacokinetics of chlorambucil in patients with chronic lymphocytic leukaemia: comparison of different days, cycles and doses. Pharmacol Toxicol. 2000 Nov;87(5):223-8.[PMID:11129502]
  • Curtius HC, Wolfensberger M, Redweik U, Leimbacher W, Maibach RA, Isler W: Mass fragmentography of 5-hydroxytryptophol and 5-methoxytryptophol in human cerebrospinal fluid. J Chromatogr. 1975 Oct 29;112:523-31.[PMID:1184685]
  • Ishiwata S, Itoh K, Yamaguchi T, Ishida N, Mizugaki M: Comparison of serum and urinary levels of modified nucleoside, 1-methyladenosine, in cancer patients using a monoclonal antibody-based inhibition ELISA. Tohoku J Exp Med. 1995 May;176(1):61-8.[PMID:7482520]
Urämie
  • Shoemaker JD, Elliott WH: Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J Chromatogr. 1991 Jan 2;562(1-2):125-38.[PMID:2026685]
  • Guneral F, Bachmann C: Age-related reference values for urinary organic acids in a healthy Turkish pediatric population. Clin Chem. 1994 Jun;40(6):862-6.[PMID:8087979]
  • Niwa T, Takeda N, Yoshizumi H: RNA metabolism in uremic patients: accumulation of modified ribonucleosides in uremic serum. Technical note. Kidney Int. 1998 Jun;53(6):1801-6.[PMID:9607216]
  • Paul BD, Smith ML: Cyanide and thiocyanate in human saliva by gas chromatography-mass spectrometry. J Anal Toxicol. 2006 Oct;30(8):511-5.[PMID:17132244]
  • Kai M, Miyazaki T, Ohkura Y: High-performance liquid chromatographic measurement of guanidino compounds of clinical importance in human urine and serum by pre-column fluorescence derivatization using benzoin. J Chromatogr. 1984 Nov 28;311(2):257-66.[PMID:6520173]
  • Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS: The human serum metabolome. PLoS One. 2011 Feb 16;6(2):e16957. doi: 10.1371/journal.pone.0016957.[PMID:21359215]
  • Ogawa Y, Machida N, Jahana M, Gakiya M, Chinen Y, Oda M, Morozumi M, Sugaya K: Major factors modulating the serum oxalic acid level in hemodialysis patients. Front Biosci. 2004 Sep 1;9:2901-8.[PMID:15353324]
  • Canepa A, Filho JC, Gutierrez A, Carrea A, Forsberg AM, Nilsson E, Verrina E, Perfumo F, Bergstrom J: Free amino acids in plasma, red blood cells, polymorphonuclear leukocytes, and muscle in normal and uraemic children. Nephrol Dial Transplant. 2002 Mar;17(3):413-21.[PMID:11865086]
  • Hoppe B, Kemper MJ, Hvizd MG, Sailer DE, Langman CB: Simultaneous determination of oxalatecitrate and sulfate in children's plasma with ion chromatography. Kidney Int. 1998 May;53(5):1348-52.[PMID:9573551]
  • Fujita T, Amuro Y, Hada T, Higashino K: Plasma levels of pipecolic acid, both L- and D-enantiomers, in patients with chronic liver diseases, especially hepatic encephalopathy. Clin Chim Acta. 1999 Sep;287(1-2):99-109.[PMID:10509899]
  • Ishiwata S, Itoh K, Yamaguchi T, Ishida N, Mizugaki M: Comparison of serum and urinary levels of modified nucleoside, 1-methyladenosine, in cancer patients using a monoclonal antibody-based inhibition ELISA. Tohoku J Exp Med. 1995 May;176(1):61-8.[PMID:7482520]
  • Guo K, Li L: Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Anal Chem. 2009 May 15;81(10):3919-32. doi: 10.1021/ac900166a.[PMID:19309105]
  • Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS: The human urine metabolome. PLoS One. 2013 Sep 4;8(9):e73076. doi: 10.1371/journal.pone.0073076. eCollection 2013.[PMID:24023812]
  • Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, Argiles A: Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012 Jul;23(7):1258-70. doi: 10.1681/ASN.2011121175. Epub 2012 May 24.[PMID:22626821]
  • Merck Manual of Diagnosis and Therapy.
  • Geigy Scientific Tables, 8th Rev edition, pp. 165-177. Edited by C. Lentner, West Cadwell, N.J.: Medical education Div., Ciba-Geigy Corp., Basel, Switzerland c1981-1992.
  • Geigy Scientific Tables, 8th Rev edition, pp. 80-82. Edited by C. Lentner, West Cadwell, N.J.: Medical education Div., Ciba-Geigy Corp., Basel, Switzerland c1981-1992.
  • Geigy Scientific Tables, 8th Rev edition, pp. 130. Edited by C. Lentner, West Cadwell, N.J.: Medical education Div., Ciba-Geigy Corp. Basel, Switzerland c1981-1992.
  • David F. Putnam Composition and Concentrative Properties of Human Urine. NASA Contractor Report. July 1971
  • National Health and Nutrition Examination Survey (NHANES Survey) 2013
Colitis ulcerosa
  • Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS: DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res. 2011 Jan;39(Database issue):D1035-41. doi: 10.1093/nar/gkq1126. Epub 2010 Nov 8.[PMID:21059682]
  • Almer S, Andersson T, Strom M: Pharmacokinetics of tranexamic acid in patients with ulcerative colitis and in healthy volunteers after the single instillation of 2 g rectally. J Clin Pharmacol. 1992 Jan;32(1):49-54.[PMID:1740537]
  • Garner CE, Smith S, de Lacy Costello B, White P, Spencer R, Probert CS, Ratcliffe NM: Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB J. 2007 Jun;21(8):1675-88. Epub 2007 Feb 21.[PMID:17314143]
  • Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, Wilson ID, Wang Y: Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. 2007 Feb;6(2):546-51.[PMID:17269711]
  • Le Gall G, Noor SO, Ridgway K, Scovell L, Jamieson C, Johnson IT, Colquhoun IJ, Kemsley EK, Narbad A: Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J Proteome Res. 2011 Sep 2;10(9):4208-18. doi: 10.1021/pr2003598. Epub 2011 Aug 8.[PMID:21761941]
  • Ahmed I, Greenwood R, Costello Bde L, Ratcliffe NM, Probert CS: An investigation of fecal volatile organic metabolites in irritable bowel syndrome. PLoS One. 2013;8(3):e58204. doi: 10.1371/journal.pone.0058204. Epub 2013 Mar 13.[PMID:23516449]
  • Walton C, Fowler DP, Turner C, Jia W, Whitehead RN, Griffiths L, Dawson C, Waring RH, Ramsden DB, Cole JA, Cauchi M, Bessant C, Hunter JO: Analysis of volatile organic compounds of bacterial origin in chronic gastrointestinal diseases. Inflamm Bowel Dis. 2013 Sep;19(10):2069-78. doi: 10.1097/MIB.0b013e31829a91f6.[PMID:23867873]
  • De Preter V, Machiels K, Joossens M, Arijs I, Matthys C, Vermeire S, Rutgeerts P, Verbeke K: Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut. 2015 Mar;64(3):447-58. doi: 10.1136/gutjnl-2013-306423. Epub 2014 May 8.[PMID:24811995]
  • Bjerrum JT, Wang Y, Hao F, Coskun M, Ludwig C, Gunther U, Nielsen OH: Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn's disease and healthy individuals. Metabolomics. 2015;11:122-133. Epub 2014 Jun 1.[PMID:25598765]
  • Ahmed I, Greenwood R, Costello B, Ratcliffe N, Probert CS: Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Aliment Pharmacol Ther. 2016 Mar;43(5):596-611. doi: 10.1111/apt.13522. Epub 2016 Jan 25.[PMID:26806034]
  • Lee T, Clavel T, Smirnov K, Schmidt A, Lagkouvardos I, Walker A, Lucio M, Michalke B, Schmitt-Kopplin P, Fedorak R, Haller D: Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut. 2017 May;66(5):863-871. doi: 10.1136/gutjnl-2015-309940. Epub 2016 Feb 4.[PMID:26848182]
  • Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158.[PMID:27609529]
  • Azario I, Pievani A, Del Priore F, Antolini L, Santi L, Corsi A, Cardinale L, Sawamoto K, Kubaski F, Gentner B, Bernardo ME, Valsecchi MG, Riminucci M, Tomatsu S, Aiuti A, Biondi A, Serafini M: Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I. Sci Rep. 2017 Aug 25;7(1):9473. doi: 10.1038/s41598-017-09958-9.[PMID:28842642]
Lewy-Körper-Demenz
  • Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6.[PMID:23857558]

Quelle & weitere Informationen: https://pubchem.ncbi.nlm.nih.gov/compound/spermidine#section=Top

Hinweis

Bitte beachten Sie den folgenden Hinweis: Die auf auf dieser Seite angebotenen Informationen sind kein Ersatz für eine medizinische Beratung oder Behandlung. Bei gesundheitlichen Beschwerden oder Erkrankungen lassen sie sich bitte von Ihrem Arzt beraten. Nutzen Sie die Informationen dieser Website nicht als alleinige Grundlage für gesundheitsbezogene Entscheidungen, denn die Inhalte können trotz sorgfältiger Recherche inhaltliche Fehler enthalten.